2011年9月26日星期一

Proactively preparing for the Smart Grid

With utility costs rising apparently with little end in sight, many building owners and operators view the potential of Smart Grids and their associated technologies with excitement. The transition of the century-old U.S. power grid, which is the largest interconnected web of technology and machinery on Earth, into a Smart Grid has begun, with technological advancements being implemented in transmission efficiency, integration of intermittent power sources such as solar and wind, distributed combined heat and power systems, and smarter buildings.

Already, Smart Grid pilot projects are showing promising results. In North Carolina, 100 Fayetteville residents and businesses cut energy use an average of 20% during a six-month pilot in 2010. As these systems come online, they can have enough impact to reduce the building of new power plants—an expense that is largely borne by the residential and commercial sectors.

On an individual basis, businesses in some areas are reaping minor benefits from Smart Grid technologies such as two-way communication enabled by smart meters. For example, some business owners currently power down noncontinuous, noncritical operations—from computers and printers to production line assemblies—based on real-time utility pricing—during designated times of peak power usage and rates. Even critical machinery such as cooling and refrigeration systems is being duty-cycled periodically without affecting operational effectiveness.

Many commercial, institutional, and industrial facilities allow utilities to bring on power generation assets automatically to meet utility-grid peak demand and manage alternative energy source integration with the electrical power grid. These are the baby steps that only hint at what lies ahead.

Much work and coordination is needed and underway by the utility, building, and government sectors to make widespread Smart Grid deployment a reality. Owners of existing buildings that are not yet able to participate in these programs may be asking their engineers how they can speed up the process.

While it’s beneficial to stay engaged with local utilities and thereby be apprised of available Smart Grid projects, the reality is that outside forces and factors play a large role in when Smart Grid benefits will be available to a given location. Astute engineers can show building owners that analysis of existing configurations now to identify internal operational improvements—and where it is possible to implement them—is the best way to prepare for Smart Grid technology.

These improvements and the data that drive them, both of which focus on making the buildings smart in themselves, provide real-time feedback on the building’s performance through information gathered from smart utility meters, advanced metering systems, building equipment sensors, occupant surveys, and other mechanisms (see Figure 1). Not only do building performance indicators provide management and operations staff with the information to operate a building for maximum economic, environmental, and social performance in the short term, but the data they provide create valuable benchmarks for building performance over time.

An occupant survey is a vital source of information for improving both a building’s performance and the productivity of the occupants within it. Surveys help owners determine which building services and design features work as intended, and where problems are causing the occupants to intervene or be less productive than optimal.

Occupants who are dissatisfied with their environment will install fans, electric heaters, additional lighting, and other personal improvements—all of which can reduce the satisfaction of other occupants and negatively impact operating costs. Fear of reprisal may prohibit occupants from answering surveys honestly, so respondents should be reassured that all comments are welcome and will be handled sensitively.

Surveys should encourage participants to move beyond the typical enhancements to less-common issues. For example, an occupant might be placing paper over air registers/diffusers because he is cold, or running portable air purifiers because he has a perception, however untrue, that the air in the building is not clean.

Occupant surveys should also incorporate concerns for productivity such as ambient noise. If personnel cannot work effectively because the office environment is open or established as a cubicle farm that does not sufficiently dampen the sound of nearby discussions, productivity will be affected. Likewise, perhaps some personnel do not have enough space to perform their work.

Try to uncover every physical constraint and indoor environmental quality complaint and then make a plan to address them. These benefits can be enormous, as productivity savings routinely exceed direct energy cost returns and provide significant savings.

没有评论:

发表评论